Issue |
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
|
|
---|---|---|
Article Number | 23014 | |
Number of page(s) | 4 | |
Section | Poster Session (Aerosol Observations and Retrievals II) | |
DOI | https://doi.org/10.1051/epjconf/201611923014 | |
Published online | 07 June 2016 |
https://doi.org/10.1051/epjconf/201611923014
Comparison of Aerosol Optical and Microphysical Retrievals from HSRL-2 and in-Situ Measurements During DISCOVER-AQ 2013 (California and Texas)
1 NASA Langley Research Center, Hampton, VA, USA
2 Oak Ridge Associated Universities, TN, USA
3 University of Hertfordshire, UK
4 Science System and Applications Inc., Hampton, VA, USA
5 Physics Instrumentation Center, Troitsk, Russia
* Email: patricia.sawamura@nasa.gov
Published online: 7 June 2016
The combination of backscatter coefficients measured at 355, 532 and 1064 nm and extinction coefficients at 355 and 532 nm (i.e. 3β+2α) can be used to retrieve profiles of optical and microphysical properties of aerosols, such as effective radius, total volume concentration and total number concentration. NASA LaRC HSRL-2 is an airborne multi-wavelength high spectral resolution lidar in operation that provides the full 3β+2α dataset. HSRL-2 was deployed during DISCOVER-AQ along with other airborne and ground-based instruments that also measured many aerosol parameters in close proximity to the HSRL-2 system, allowing us to evaluate the performance of an automated and unsupervised retrieval algorithm that has been recently developed. We present the results from California (Jan/Feb 2013) and Texas (Sep 2013) DISCOVER-AQ.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.