Issue |
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
|
|
---|---|---|
Article Number | 23018 | |
Number of page(s) | 4 | |
Section | Poster Session (Aerosol Observations and Retrievals II) | |
DOI | https://doi.org/10.1051/epjconf/201611923018 | |
Published online | 07 June 2016 |
https://doi.org/10.1051/epjconf/201611923018
Aerosol Properties over Southeastern China from Multi-Wavelength Raman and Depolarization Lidar Measurements
1 Leibniz Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
2 School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
* Email: heese@tropos.de
Published online: 7 June 2016
A dataset of particle optical properties of highly polluted urban aerosol over the Pearl River Delta, Guangzhou, China is presented. The data were derived from multi-wavelengths Raman and depolarization lidar PollyXT and AERONET sun photometer measurements. The measurement campaign was conducted from Nov 2011 to June 2012. High aerosol optical depth was observed in the polluted atmosphere over this megacity, with a mean value of 0.54 ± 0.33 and a peak value of even 1.9. For the particle characterization the lidar ratio and the linear particle depolarization ratio, both at 532 nm, were used. The mean values of these properties are 48.0 sr ± 10.7 sr for the lidar ratio and 4%+-4% for the particle depolarization ratio, which means most depolarization measurements stayed below 10%. So far, most of these results indicate urban pollution particles mixed with particles arisen from biomass and industrial burning.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.