Issue |
EPJ Web of Conferences
Volume 120, 2016
XLV International Symposium on Multiparticle Dynamics (ISMD 2015)
|
|
---|---|---|
Article Number | 03008 | |
Number of page(s) | 6 | |
Section | 3 Poster session | |
DOI | https://doi.org/10.1051/epjconf/201612003008 | |
Published online | 04 July 2016 |
https://doi.org/10.1051/epjconf/201612003008
Relativistic second-order dissipative fluid dynamics at finite chemical potential
1 GSI, Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt Germany
2 Institute of Theoretical Physics, University of Wroclaw, PL-50204 Wroclaw Poland
3 Extreme Matter Institute EMMI, GSI, Planckstrasse 1, D-64291 Darmstadt Germany
4 Department of Physics, Duke University, Durham, North Carolina 22708 USA
a e-mail: jaiswal.amaresh@gmail.com
Published online: 4 July 2016
We employ a Chapman-Enskog like expansion for the distribution function close to equilibrium to solve the Boltzmann equation in the relaxation time approximation and subsequently derive second-order evolution equations for dissipative charge currentand shear stress tensor for a system of massless quarks and gluons. We use quantum statistics for the phase space distribution functions to calculate the transport coefficients. We show that, the second-order evolution equations for the dissipative charge current and the shear stress tensor can be decoupled. We find that, for large chemical potential, the charge conductivity is small compared to the shear viscosity. Moreover, we demonstrate that the limiting behaviour of the ratio of heat conductivity to shear viscosity is identicalto that obtained for a strongly coupled conformal plasma.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.