Issue |
EPJ Web Conf.
Volume 140, 2017
Powders and Grains 2017 – 8th International Conference on Micromechanics on Granular Media
|
|
---|---|---|
Article Number | 09005 | |
Number of page(s) | 4 | |
Section | Fluids and particles | |
DOI | https://doi.org/10.1051/epjconf/201714009005 | |
Published online | 30 June 2017 |
https://doi.org/10.1051/epjconf/201714009005
Structural changes in wet granular matter due to drainage
Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
* e-mail: prapanch.nair@fau.de
Published online: 30 June 2017
Unsaturated wet granular media are usually modelled using force laws based on analytical and empirical results of liquid bridge forces between pairs of grains. These models make ad-hoc assumptions on the liquid volume present in the bridges and its distribution. The force between grains and rupture criterion of the bridge are a function of this assumed volume of liquid, in addition to other parameters like contact angle of the liquid, geometry of the grains and the inter grain distance. To study the initial volume and morphology of liquid bridges, hydrodynamic simulation of dynamic effects leading to formation of liquid bridges at grain scale are indispensable. We use a Smoothed Particle Hydrodynamics algorithm to simulate the hydrodynamics of the evolution of the free surface using a novel freesurface-capillary model, inspired by the molecular basis of surface tension. We present validations for the model and simulations of formation and rupture of liquid bridges.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.