Issue |
EPJ Web Conf.
Volume 140, 2017
Powders and Grains 2017 – 8th International Conference on Micromechanics on Granular Media
|
|
---|---|---|
Article Number | 12005 | |
Number of page(s) | 4 | |
Section | Geomaterials | |
DOI | https://doi.org/10.1051/epjconf/201714012005 | |
Published online | 30 June 2017 |
https://doi.org/10.1051/epjconf/201714012005
An appraisal of the influence of material fabric and stress anisotropy on small-strain stiffness
Department of Civil and Environmental Engineering, Imperial College London, Skempton Building, London, UK
* Corresponding author: cath.osullivan@imperial.ac.uk
Published online: 30 June 2017
This paper examines the effect of a non-isotropic, true triaxial stress state on soil stiffness using discrete element method (DEM) simulations. Samples of uniform spheres with a very stable face centred cubic (FCC) are considered to isolate the effect of stress from stress-induced fabric changes. At the same time the anisotropic nature of the lattice fabric enables the effect of fabric on the observed responses to be explored. The elastic or small strain stiffness was determined by applying small amplitude displacement perturbations to the samples and measuring the resultant shear wave velocity. Two different mean stress levels were considered and at both stress levels the magnitudes of the three principal stresses were varied. The data obtained confirm that the stresses in direction of wave propagation and shear wave oscillation have a measurable influence on shear modulus values. The extent of sensitivity depends on the material fabric. The stress component orthogonal to the plane of wave motion has, however, a less marked effect on shear
Key words: material fabric / stress anisotropy / small-strain stiffness
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.