Issue |
EPJ Web Conf.
Volume 140, 2017
Powders and Grains 2017 – 8th International Conference on Micromechanics on Granular Media
|
|
---|---|---|
Article Number | 11002 | |
Number of page(s) | 4 | |
Section | Continuum modeling | |
DOI | https://doi.org/10.1051/epjconf/201714011002 | |
Published online | 30 June 2017 |
https://doi.org/10.1051/epjconf/201714011002
Testing the μ(I) granular rheology against experimental silo data
1 Institute of Fundamental Sciences, Massey University, New Zealand
2 Volcanic Risk Solutions, Massey University , New Zealand
3 School of Engineering and Advanced technology, Massey University, New Zealand
4 Institut Jean le Rond d’Alembert, Université Pierre et Marie Curie, Paris, France
* e-mail: L.Fullard@Massey.ac.nz
Published online: 30 June 2017
Industrial storage of granular material using silos is common, however, improved understanding of silo flow is needed. Various continuum models attempt to describe the velocity of dense granular flow in silos. Kinematic, and recently, stochastic models, based upon the diffusion of some quantity, perform well when there is a single orifice, and when the yield criterion is satisfied. However, if system stresses are insufficient to satisfy the yield criterion, or if there is a second orifice, these models fail to capture the entire flow behaviour. Advances in granular rheology have allowed a pressure dependent friction law to be defined which can capture the behaviour of granular silo flow including un-yielded zones, flow-rate independence of fill height, the Beverloo flow-rate, and various other phenomena. We performed silo discharge experiments in a flat bottomed planar silo with a single and two adjacent orifices, for two grain types. The velocity was measured using Particle Image Velocimetry. Results were compared to a mathematical model based on the μ(I) rheology which was shown to qualitatively capture the observed phenomena including plug-like zones where the yield criterion is not satisfied. These preliminary results strongly encourage future investigations into the effect of friction parameters and numerical boundary conditions.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.