Issue |
EPJ Web Conf.
Volume 140, 2017
Powders and Grains 2017 – 8th International Conference on Micromechanics on Granular Media
|
|
---|---|---|
Article Number | 08011 | |
Number of page(s) | 4 | |
Section | Cohesive granular materials | |
DOI | https://doi.org/10.1051/epjconf/201714008011 | |
Published online | 30 June 2017 |
https://doi.org/10.1051/epjconf/201714008011
Effect of moisture content on the flowability of crushed ores
Jenike and Johanson Chile S.A., Avda. Libertad 798, Office #501, Viña del Mar, Chile
* Corresponding author: fcabrejos@jenike.com
Published online: 30 June 2017
In many mining and industrial processes where large quantities of non-degrading bulk materials such as crushed ores are handled, silos, hoppers, stockpiles and chutes are widely used because they are economical and reliable (if properly designed and operated). However, they are not free of trouble and may experience flow problems such as arching, ratholing, erratic flow, limited storage capacity, limited discharge flow rate, caking, segregation and/or flooding. Moisture content and fine particles significantly affect the flowability of most ores, increasing their cohesive strength and turning them more prone to these problems. The purpose of this article is to highlight a proven, scientific method that can be utilized to ensure reliable storage, flow and discharge of bulk solids in these equipment based on Jenike’s flow-of-solids theory and laboratory testing. Knowledge of the flow properties of the material handled provides a design basis to ensure mass flow, avoid arching and prevent the formation of “ratholes”. The effect of an increase in water content of the ore is discussed with experimental results.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.