Issue |
EPJ Web Conf.
Volume 140, 2017
Powders and Grains 2017 – 8th International Conference on Micromechanics on Granular Media
|
|
---|---|---|
Article Number | 02014 | |
Number of page(s) | 4 | |
Section | Granular solids | |
DOI | https://doi.org/10.1051/epjconf/201714002014 | |
Published online | 30 June 2017 |
https://doi.org/10.1051/epjconf/201714002014
Non-Dissipative Structural Evolutions in Granular Materials
Civil Engineering Department, University of Calgary, Canada
* e-mail: mpouragh@ucalgary.ca
** e-mail: wan@ucalgary.ca
Published online: 30 June 2017
The structure of the contact network in granular assemblies can evolve due to either dissipative mechanisms such as sliding at contact points, or non-dissipative mechanisms through the phenomenon of contact gain and loss. Being associated with negligible deformations, non-dissipative mechanisms is actually active even in the small strain range of ~ 10−3, especially in the case of densely packed assemblies. Hence, from a constitutive modelling point of view, it is crucial to be able to estimate such non-dissipative evolutions since both elastic and plastic properties of granular assemblies highly depend on contact network characteristics. The current study proposes an analytical scheme that allows us to estimate the non-dissipative contact gain/loss regime in terms of directional changes in the average contact force. The probability distribution of contact forces is used to compute the number of lost contact for each direction. Similarly, the number of newly formed contacts is estimated by considering the probability distribution of the gap between neighbouring particles. Based on the directional contact gain/loss computed, the changes in coordination number and fabric anisotropy can be found which, together with statistical treatments of Love-Weber stress expression, form a complete system of equations describing the evolution of other controlling microvariables. Finally, the results of the calculations have been compared with DEM simulations which verify the accuracy of the proposed scheme.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.