Issue |
EPJ Web Conf.
Volume 140, 2017
Powders and Grains 2017 – 8th International Conference on Micromechanics on Granular Media
|
|
---|---|---|
Article Number | 13017 | |
Number of page(s) | 4 | |
Section | Powder processing | |
DOI | https://doi.org/10.1051/epjconf/201714013017 | |
Published online | 30 June 2017 |
https://doi.org/10.1051/epjconf/201714013017
Flowability of lignocellusic biomass powders: influence of torrefaction intensity
LGPM, Centrale Supélec, Université Paris-Saclay, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
* Corresponding author: john.pachon@centralesupelec.fr
Published online: 30 June 2017
The poor flowability of powders produced from raw lignocellulosic biomass may be an economically issue for the production of second-generation biofuels. Torrefaction is a pre-treatment step of the gasification process that improves the physical characteristics of biomass by making it more coal-like. Particularly, the loss of resilience allows a reduction of the grinding energy consumption and is likely to improve the flow behaviour of woody powders. In this study, we investigated the effect of particle size and shape distribution on flow properties (unconfined yield stress and flowability factor) of powder from raw and torrefied biomass (Picea abies). Several intensities of torrefaction were tested, and its extent was quantified by the global mass loss, chosen as synthetic indicator of torrefaction intensity (its accounts for both the temperature level and the residence time). The intensity of torrefaction shifts the particle size distribution towards smaller sizes. An effect on the circularity and aspect ratio was also observed. A strong, positive correlation was obtained between the measured flowability of biomass powders at different consolidation stresses and the intensity of heat treatment. These results confirm the interest of torrefaction as a pre-treatment step and aim to provide new knowledge on rheological properties of biomass powders.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.