Issue |
EPJ Web Conf.
Volume 140, 2017
Powders and Grains 2017 – 8th International Conference on Micromechanics on Granular Media
|
|
---|---|---|
Article Number | 16011 | |
Number of page(s) | 4 | |
Section | Miscellaneous | |
DOI | https://doi.org/10.1051/epjconf/201714016011 | |
Published online | 30 June 2017 |
https://doi.org/10.1051/epjconf/201714016011
Statistical analysis of cone penetration resistance of railway ballast
SNCF Réseau – I&P – LVE - CIR
Published online: 30 June 2017
Dynamic penetrometer tests are widely used in geotechnical studies for soils characterization but their implementation tends to be difficult. The light penetrometer test is able to give information about a cone resistance useful in the field of geotechnics and recently validated as a parameter for the case of coarse granular materials. In order to characterize directly the railway ballast on track and sublayers of ballast, a huge test campaign has been carried out for more than 5 years in order to build up a database composed of 19,000 penetration tests including endoscopic video record on the French railway network. The main objective of this work is to give a first statistical analysis of cone resistance in the coarse granular layer which represents a major component of railway track: the ballast. The results show that the cone resistance (qd) increases with depth and presents strong variations corresponding to layers of different natures identified using the endoscopic records. In the first zone corresponding to the top 30cm, (qd) increases linearly with a slope of around 1MPa/cm for fresh ballast and fouled ballast. In the second zone below 30cm deep, (qd) increases more slowly with a slope of around 0,3MPa/cm and decreases below 50cm. These results show that there is no clear difference between fresh and fouled ballast. Hence, the (qd) sensitivity is important and increases with depth. The (qd) distribution for a set of tests does not follow a normal distribution. In the upper 30cm layer of ballast of track, data statistical treatment shows that train load and speed do not have any significant impact on the (qd) distribution for clean ballast; they increase by 50% the average value of (qd) for fouled ballast and increase the thickness as well. Below the 30cm upper layer, train load and speed have a clear impact on the (qd) distribution.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.