Issue |
EPJ Web Conf.
Volume 148, 2017
5th course of the MRS-EMRS “Materials for Energy and Sustainability” and 3rd course of the “EPS-SIF International School on Energy”
|
|
---|---|---|
Article Number | 00004 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/epjconf/201714800004 | |
Published online | 24 July 2017 |
https://doi.org/10.1051/epjconf/201714800004
Energy in buildings: Efficiency, renewables and storage
Swiss Federal Laboratories for Materials Science and Technology, Empa Ueberlandstrasse 129, CH-8600, Duebendorf, Switzerland
(*) E-mail: matthias.koebel@empa.ch, www.empa.ch
Published online: 24 July 2017
This lecture summary provides a short but comprehensive overview on the “energy and buildings” topic. Buildings account for roughly 40% of the global energy demands. Thus, an increased adoption of existing and upcoming materials and solutions for the building sector represents an enormous potential to reduce building related energy demands and greenhouse gas emissions. The central question is how the building envelope (insulation, fenestration, construction style, solar control) affects building energy demands. Compared to conventional insulation materials, superinsulation materials such as vacuum insulation panels and silica aerogel achieve the same thermal performance with significantly thinner insulation layers. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduce thermal losses by up to an order of magnitude compared to old single pane windows, while vacuum insulation and aerogel filled glazing could reduce these even further. Electrochromic and other switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems into the building energy supply, buildings can become both producers and consumers of energy. Combined with dynamic user behavior, temporal variations in the production of renewable energy require appropriate storage solutions, both thermal and electrical, and the integration of buildings into smart grids and energy district networks. The combination of these measures allows a reduction of the existing building stock by roughly a factor of three —a promising, but cost intensive way, to prepare our buildings for the energy turnaround.
© The Authors, published by EDP Sciences - SIF, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.