Issue |
EPJ Web Conf.
Volume 153, 2017
ICRS-13 & RPSD-2016, 13th International Conference on Radiation Shielding & 19th Topical Meeting of the Radiation Protection and Shielding Division of the American Nuclear Society - 2016
|
|
---|---|---|
Article Number | 04015 | |
Number of page(s) | 8 | |
Section | 4. Medical Facilities, Radiotherapy & Medical Applications, Space Dosimetry & Shielding | |
DOI | https://doi.org/10.1051/epjconf/201715304015 | |
Published online | 25 September 2017 |
https://doi.org/10.1051/epjconf/201715304015
Simulation of irradiation exposure of electronic devices due to heavy ion therapy with Monte Carlo Code MCNP6
1 University Stuttgart, Institute for Nuclear Energy and Energy Systems, 70569 Stuttgart, Germany
2 University Stuttgart, KE Technology GmbH, 70569 Stuttgart, Germany
3 Graz University of Technology, Master Student, Austria
a Nicole.guilliard@ike.uni-stuttgart.de
Published online: 25 September 2017
During heavy ion irradiation therapy the patient has to be located exactly at the right position to make sure that the Bragg peak occurs in the tumour. The patient has to be moved in the range of millimetres to scan the ill tissue. For that reason a special table was developed which allows exact positioning. The electronic control can be located outside the surgery. But that has some disadvantage for the construction. To keep the system compact it would be much more comfortable to put the electronic control inside the surgery. As a lot of high energetic secondary particles are produced during the therapy causing a high dose in the room it is important to find positions with low dose rates. Therefore, investigations are needed where the electronic devices should be located to obtain a minimum of radiation, help to prevent the failure of sensitive devices. The dose rate was calculated for carbon ions with different initial energy and protons over the entire therapy room with Monte Carlo particle tracking using MCNP6. The types of secondary particles were identified and the dose rate for a thin silicon layer and an electronic mixture material was determined. In addition, the shielding effect of several selected material layers was calculated using MCNP6.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.