Issue |
EPJ Web Conf.
Volume 162, 2017
International Conference on Applied Photonics and Electronics 2017 (InCAPE2017)
|
|
---|---|---|
Article Number | 01035 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/epjconf/201716201035 | |
Published online | 22 November 2017 |
https://doi.org/10.1051/epjconf/201716201035
Investigation of AWG demultiplexer based SOI for CWDM application
1
School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis
2
Institute of Microengineering Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
* Corresponding author: nurjuliana@unimap.edu.my
Published online: 22 November 2017
9-channel Arrayed Waveguide Grating (AWG) demultiplexer for conventional and tapered structure were simulated using beam propagation method (BPM) with channel spacing of 20 nm. The AWG demultiplexer was design using high refractive index (n~3.47) material namely silicon-on-insulator (SOI) with rib waveguide structure. The characteristics of insertion loss, adjacent crosstalk and output spectrum response at central wavelength of 1.55 μm for both designs were compared and analyzed. The conventional AWG produced a minimum insertion loss of 6.64 dB whereas the tapered AWG design reduced the insertion loss by 2.66 dB. The lowest adjacent crosstalk value of -16.96 dB was obtained in the conventional AWG design and this was much smaller compared to the tapered AWG design where the lowest crosstalk value is -17.23 dB. Hence, a tapered AWG design significantly reduces the insertion loss but has a slightly higher adjacent crosstalk compared to the conventional AWG design. On the other hand, the output spectrum responses that are obtained from both designs were close to the Coarse Wavelength Division Multiplexing (CWDM) wavelength grid.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.