Issue |
EPJ Web Conf.
Volume 165, 2017
Nuclear Physics in Astrophysics VIII (NPA8 2017)
|
|
---|---|---|
Article Number | 01038 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/epjconf/201716501038 | |
Published online | 30 December 2017 |
https://doi.org/10.1051/epjconf/201716501038
Study of the 2H(p,γ)3He reaction in the Big Bang Nucleosynthesis energy range at LUNA
Università degli Studi di Bari and INFN sez. Bari
Published online: 30 December 2017
Deuterium is the first nucleus produced in the Universe, whose accumulation marks the beginning of the so called Big Bang Nucleosynthesis (BBN). Its primordial abundance is very sensitive to some cosmological parameters like the baryon density and the number of the neutrino families. Presently the main obstacle to an accurate theoretical deuterium abundance evaluation is due to the poor knowledge of the 2H(p,γ)3He cross section at BBN energies. The aim of the present work is to describe the experimental approach proposed by the LUNA collaboration, whose goal is to measure, with unprecedented precision, the total and the differential cross section of the reaction in the 30 < Ec.m. [keV] < 300 energy range.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.