Issue |
EPJ Web Conf.
Volume 168, 2018
Joint International Conference of ICGAC-XIII and IK-15 on Gravitation, Astrophysics and Cosmology
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 10 | |
Section | Plenary Talks | |
DOI | https://doi.org/10.1051/epjconf/201816801007 | |
Published online | 09 January 2018 |
https://doi.org/10.1051/epjconf/201816801007
Towards causal patch physics in dS/CFT
Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
* e-mail: yashula@gmail.com
Published online: 9 January 2018
This contribution is a status report on a research program aimed at obtaining quantum-gravitational physics inside a cosmological horizon through dS/CFT, i.e. through a holographic description at past/future infinity of de Sitter space. The program aims to bring together two main elements. The first is the observation by Anninos, Hartman and Strominger that Vasiliev’s higher-spin gravity provides a working model for dS/CFT in 3+1 dimensions. The second is the proposal by Parikh, Savonije and Verlinde that dS/CFT may prove more tractable if one works in so-called “elliptic” de Sitter space – a folded-in-half version of global de Sitter where antipodal points have been identified. We review some relevant progress concerning quantum field theory on elliptic de Sitter space, higher-spin gravity and its holographic duality with a free vector model. We present our reasons for optimism that the approach outlined here will lead to a full holographic description of quantum (higher-spin) gravity in the causal patch of a de Sitter observer.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.