Issue |
EPJ Web Conf.
Volume 171, 2018
17th International Conference on Strangeness in Quark Matter (SQM 2017)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 8 | |
Section | Strangeness | |
DOI | https://doi.org/10.1051/epjconf/201817102001 | |
Published online | 02 February 2018 |
https://doi.org/10.1051/epjconf/201817102001
Strangeness at high μB: Recent data from FOPI and HADES
GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany
* e-mail: Y.Leifels@gsi.de
Published online: 2 February 2018
Strangeness production in heavy-ion reactions at incident energies at or below the threshold in NN collisions gives access to the characteristics of bulk nuclear matter and the properties of strange particles inside the hot and dense nuclear medium, like potentials and interaction cross sections. At these energies strangeness is produced in multi-step processes potentially via excitation of intermediate heavy resonances. The amount of experimental data on strangeness production at these energies has increased substantially during the last years due to the FOPI and the HADES experiments at SIS18 at GSI. Experimental data on K+ and K0 production support the assumption that particles with an s quark feel a moderate repulsive potential in the nuclear medium. The situation is not that clear in the case of K-. Here, spectra and flow of K- mesons is influenced by the contribution of ø mesons which are decaying into K+K- pairs with a branching ratio of 48.9 %. Depending on incident energy upto 30 % of all K- mesons measured in heavyion collisions are originating from ø-decays. Strangeness production yields - except the yield of Ξ- are described by thermal hadronisation models. Experimental data not only measured for heavy-ion collisions but also in proton induced reactions are described with sets of temperature T and baryon chemical potential μb which are close to a universal freeze-out curve which is fitting also experimental data obtained at lower baryon chemical potential. Despite the good description of most particle production yields, the question how this is achieved is still not settled and should be the focus of further investigations.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.