Issue |
EPJ Web Conf.
Volume 174, 2018
4th International Conference on Micro Pattern Gaseous Detectors (MPGD 2015)
|
|
---|---|---|
Article Number | 07003 | |
Number of page(s) | 4 | |
Section | Electronics | |
DOI | https://doi.org/10.1051/epjconf/201817407003 | |
Published online | 21 February 2018 |
https://doi.org/10.1051/epjconf/201817407003
The TOTEM DAQ based on the Scalable Readout System (SRS)
1
Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Bari, Via E.Orabona - 4, Bari, Italy
2
Warsaw University of Technology, Warsaw, Poland
a e-mail: michele.quinto@cern.ch
Published online: 21 February 2018
The TOTEM (TOTal cross section, Elastic scattering and diffraction dissociation Measurement at the LHC) experiment at LHC, has been designed to measure the total proton-proton cross-section and study the elastic and diffractive scattering at the LHC energies. In order to cope with the increased machine luminosity and the higher statistic required by the extension of the TOTEM physics program, approved for the LHC’s Run Two phase, the previous VME based data acquisition system has been replaced with a new one based on the Scalable Readout System. The system features an aggregated data throughput of 2GB / s towards the online storage system. This makes it possible to sustain a maximum trigger rate of ∼ 24kHz, to be compared with the 1KHz rate of the previous system. The trigger rate is further improved by implementing zero-suppression and second-level hardware algorithms in the Scalable Readout System. The new system fulfils the requirements for an increased efficiency, providing higher bandwidth, and increasing the purity of the data recorded. Moreover full compatibility has been guaranteed with the legacy front-end hardware, as well as with the DAQ interface of the CMS experiment and with the LHC’s Timing, Trigger and Control distribution system. In this contribution we describe in detail the architecture of full system and its performance measured during the commissioning phase at the LHC Interaction Point.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.