Issue |
EPJ Web Conf.
Volume 175, 2018
35th International Symposium on Lattice Field Theory (Lattice 2017)
|
|
---|---|---|
Article Number | 07028 | |
Number of page(s) | 8 | |
Section | 7 Nonzero Temperature and Density | |
DOI | https://doi.org/10.1051/epjconf/201817507028 | |
Published online | 26 March 2018 |
https://doi.org/10.1051/epjconf/201817507028
The equation of state with non-equilibrium methods
1
Department of Physics, University of Turin & INFN, Turin Via Pietro Giuria 1, I-10125 Turin, Italy
2
Arnold-Regge Center, University of Turin Via Pietro Giuria 1, I-10125 Turin, Italy
* Speaker, e-mail: anada@to.infn.it
Published online: 26 March 2018
Jarzynski’s equality provides an elegant and powerful tool to directly compute differences in free energy in Monte Carlo simulations and it can be readily extended to lattice gauge theories to compute a large set of physically interesting observables. In this talk we present a novel technique to determine the thermodynamics of stronglyinteracting matter based on this relation, which allows for a direct and efficient determination of the pressure using out-of-equilibrium Monte Carlo simulations on the lattice. We present results for the equation of state of the SU(3) Yang-Mills theory in the confined and deconfined phases. Finally, we briefly discuss the generalization of this method for theories with fermions, with particular focus on the equation of state of QCD.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.