Issue |
EPJ Web Conf.
Volume 178, 2018
16th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS16)
|
|
---|---|---|
Article Number | 02031 | |
Number of page(s) | 2 | |
Section | Nuclear Structure | |
DOI | https://doi.org/10.1051/epjconf/201817802031 | |
Published online | 16 May 2018 |
https://doi.org/10.1051/epjconf/201817802031
Attempt to connect the nuclear charge radii with the experimental α decay data for superheavy nuclei
Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
* e-mail: qyibin@njust.edu.cn
Published online: 16 May 2018
Significant progresses have been made so far for the synthesis of the heaviest elements, while the knowledge of them appears to be quite limited even when it comes to basic properties, e.g., their size. On the other side, the observation of α decay chains is the main tool to identify the newly produced elements. In this report, we propose to make use of the available experimental α decay data to extract the nuclear charge radii of superheavy nuclei. Within the density dependent cluster model, the nucleon density distribution of the target nucleus is determined by exactly reproducing the measured α decay half-life of its parent, finally leading to the nuclear radii. Encouraged by the agreement between theory and experiment for heavy nuclei, we extend the study to the region of superheavy nuclei as well.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.