Issue |
EPJ Web Conf.
Volume 182, 2018
6th International Conference on New Frontiers in Physics (ICNFP 2017)
|
|
---|---|---|
Article Number | 02019 | |
Number of page(s) | 11 | |
Section | Talks | |
DOI | https://doi.org/10.1051/epjconf/201818202019 | |
Published online | 03 August 2018 |
https://doi.org/10.1051/epjconf/201818202019
Relaxation to equilibrium in relativistic heavy ion collisions
1
Department of Physics, University of Oslo, PB 1048 Blindern, Oslo, Norway
2
Skobeltsyn Institute of Nuclear Physics, Moscow State University, RU-119991 Moscow, Russia
3
National Research Nuclear University "MEPhI" (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow, RU-115409, Russia
a e-mail: larissa.bravina@fys.uio.no
Published online: 3 August 2018
Relaxation to equilibrium of hot and dense matter produced in central area of relativistic heavy ion collisions at energies ranging from several AGeV to hundreds AGeV is studied within two Monte Carlo transport models. The analysis was performed for three different areas: (i) fixed cubic cell with volume V = 125 fm3, (ii) fixed asymmetric cell with volume V = 4 x 4 x 1 = 16 fm3, and (iii) expanding cell. In the last case the cell volume follows the growth of the area with uniformly distributed energy. To check whether or not the system is equilibrated, its hadron yields and their energy spectra are compared with those of the statistical model of ideal hadron gas. For all cells and for all collision energies it was found that the matter in the cell was approaching the equilibrium state. The higher the collision energy, the shorter the time of equilibration. The equilibration phase lasts about 10 - 20 fm/c, after that the matter becomes very dilute and the thermal contact between hadrons is lost. Equation of state is well fitted to linear dependence P/ɛ = a = c2s , where the square of the sonic velocity c2s increases from 0.12 at Elab = 11.6AGeV to 0.145 at Elab = 160AGeV. The characteristic kinks observed in the T - μB phase diagrams are linked to inelastic freeze-out in the expanding fireball.
© The Authors, published by EDP Sciences 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.