Issue |
EPJ Web Conf.
Volume 182, 2018
6th International Conference on New Frontiers in Physics (ICNFP 2017)
|
|
---|---|---|
Article Number | 02041 | |
Number of page(s) | 9 | |
Section | Talks | |
DOI | https://doi.org/10.1051/epjconf/201818202041 | |
Published online | 03 August 2018 |
https://doi.org/10.1051/epjconf/201818202041
Low Momentum Direct Photon Measurement
1
Stony Brook University
a e-mail: wenqing.fan@stonybrook.edu
Published online: 3 August 2018
Direct photons have long been considered as golden probes to study the properties of the Quark Gluon Plasma (QGP). They do not interact strongly with the medium and are produced at all stages of the collision, hence carrying information of the entire evolution of the system to the detectors. The PHENIX experiment discovered a large excess of low pT photons in Au+Au collisions at √sNN = 200 GeV compared to reference p+p collisions, which has been interpreted as thermal radiation from the QGP and hadron gas medium. At the same time, the excess photons show a large elliptic and triangular flow. These results are challenging for the current theoretical models to describe simultaneously, because on one hand the large yield suggests early stage emissions when the temperature is high, on the other hand the large anisotropy is expected to be formed only at later stages of the collision when the system has cooled off and the thermal photon production rate is expected to be smaller. Using a variety of high statistics datasets across different collision systems and energies in PHENIX, simultaneous analyses of yields and azimuthal asymmetries of direct photons with higher precision are performed to provide more constraints to the theoretical calculations. In this talk, we will present recent results on low pT direct photons measured via their external conversions to electron-positron pairs, including new results from Au+Au at lower beam energies of 39 and 62.4 GeV, as well as Cu+Cu at 200GeV.
© The Authors, published by EDP Sciences 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.