Issue |
EPJ Web Conf.
Volume 182, 2018
6th International Conference on New Frontiers in Physics (ICNFP 2017)
|
|
---|---|---|
Article Number | 02086 | |
Number of page(s) | 9 | |
Section | Talks | |
DOI | https://doi.org/10.1051/epjconf/201818202086 | |
Published online | 03 August 2018 |
https://doi.org/10.1051/epjconf/201818202086
Sub-leading flow modes in PbPb collisions at √sNN =2.76 TeV from HYDJET++ model
1
University of Belgrade and Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Serbia
2
University of Belgrade and Institute of physics, P.O. Box 68, 11081 Belgrade, Serbia
3
University of Oslo, Department of Physics, Oslo, Norway
a e-mail: Jovan.Milosevic@cern.ch
Published online: 3 August 2018
The LHC results on the sub-leading flow modes in PbPb collisions at 2.76 TeV, related to initial-state fluctuations, are analyzed and interpreted within the HYDJET++ model. Using the newly introduced Principal Component Analysis (PCA) method applied to two-particle azimuthal correlations extracted from the model calculations, the leading and the sub-leading flow modes are studied as a function of the transverse momentum (pT ) over a wide centrality range. The leading modes of the elliptic (v(1)2) and triangular (v3(1)3) flow calculated within the HYDJET++ model reproduce rather well the v2{2} and v3{2} coeffcients experimentally measured using the two-particle correlations. Within the pT ≤3 GeV/c range where hydrodynamics dominates, the sub-leading flow effects are greatest at the highest pT of around 3 GeV/c. The sub-leading elliptic flow mode (v2(2)), which corresponds to n=2 harmonic, has a small non-zero value and slowly increases from central to peripheral collisions, while the sub-leading triangular flow mode (v3(2)), which corresponds to n =3 harmonic, is even smaller and does not depend on centrality. For n =2, the relative magnitude of the effect measured with respect to the leading flow mode shows a shallow minimum for semi-central collisions and increases for very central and for peripheral collisions. For n =3 case, there is no centrality dependence. The subleading flow mode results obtained from the HYDJET++ model are in a rather good agreement with the experimental measurements of the CMS Collaboration.
© The Authors, published by EDP Sciences 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.