Issue |
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 6 | |
Section | Modelling and Numerical Simulation | |
DOI | https://doi.org/10.1051/epjconf/201818301017 | |
Published online | 07 September 2018 |
https://doi.org/10.1051/epjconf/201818301017
Plate impact shock experiments and numerical modeling of lightweight adobe masonry material
Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut,
EMI, Eckerstr. 4,
79104
Freiburg,
Germany
* Corresponding author : christoph.sauer@emi.fraunhofer.de
Published online: 7 September 2018
In this contribution, we summarize and extend the experimental and numerical investigation of the shock response of lightweight adobe masonry, previously published in [C. Sauer et al., J. Dyn. Behav. Mater. (submitted)]. It is demonstrated that inverse planar plate impact (PPI) experiments are feasible for lightweight adobe. From the obtained free surface velocity time curves, a linear shock velocity vs. particle velocity relation is derived within the measured range of particle velocities. Numerical simulations of these curves show that the employed homogenous numerical model is capable of properly treating the shock response of this porous, inhomogeneous, and low-strength material. This numerical model is then applied to the example of the ballistic impact of steel spheres on targets consisting of one lightweight adobe brick. The experimentally obtained penetration craters are properly reproduced by the simulated target damage. Moreover, we find good agreement of the measured and simulated residual velocities within the presented range of impact velocities.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.