Issue |
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 6 | |
Section | Modelling and Numerical Simulation | |
DOI | https://doi.org/10.1051/epjconf/201818301020 | |
Published online | 07 September 2018 |
https://doi.org/10.1051/epjconf/201818301020
Numerical Simulation on the specimen dynamic plastic deformation behaviour in the torsional split Hopkinson bar test
1
Institute of systems engineering, China Academy of Engineering Physics,
Mianyang,
621999,
China
2
Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province,
Mianyang
Sichuan
621999,
China
*
Corresponding author : chengang@caep.cn
Published online: 7 September 2018
The torsional split Hopkinson bar (SHB) is an important method to study the dynamic shear behaviour and shear localization of materials under high strain rates. Different specimen sizes were used in literatures, and the size of the specimen might have an effect on the experimental results. Numerical simulation on torsional SHB tests was carried out with LS-DYNA. The strain signal on the incident and transmitted bars were obtained from the simulation just as the experiment. Then the numerical strain-stress relationship of the material was derived from the numerical strain signal using the experiments data process of torsional SHB. The agreement between numerically derived strain-stress results and the specimen material properties specified in numerical modelling indicates that the torsional SHB is applicable to study the dynamic shear behaviour of materials under high strain rates. The specimen gauge diameter has no significant effect on the dynamic torsional test result. However, higher adhesive strength is required to fix the larger gauge diameter specimen on the bars. The specimen gauge thickness has little effect on the experimental results with a modified formula to calculate the specimen stress. Still, the increase of specimen gauge thickness will lead to the increase of non-uniformity of specimen stress and strain (strain rate). Based on the simulation analysis, suggestions on the specimen size design are given as well.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.