Issue |
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 01022 | |
Number of page(s) | 6 | |
Section | Modelling and Numerical Simulation | |
DOI | https://doi.org/10.1051/epjconf/201818301022 | |
Published online | 07 September 2018 |
https://doi.org/10.1051/epjconf/201818301022
High strain rate and high temperature response of two armour steels: Experimental testing and constitutive modelling
1
School of Engineering, RMIT University,
PO Box 71, Bundoora,
Victoria
3083,
Australia
2
Defence Materials Technology Centre (DMTC),
24 Wakefield St, Hawthorn,
Victoria
3122,
Australia
3
Defence Science and Technology Group (DST-G),
506 Lorimer St, Fishermans Bend,
Victoria
3207,
Australia
4
School of Engineering and Information Technology, University of New South Wales,
Northcott Dr, Campbell, ACT
2612,
Australia
* Corresponding author: s3333246@student.rmit.edu.au
Published online: 7 September 2018
Under ballistic impact or blast loading, the high strain rate and high temperature behaviour of armour steels is key to their response to a given threat. This experimental and numerical investigation examines the tensile response of a class 4a improved rolled homogenous armour steel (IRHA) and a high hardness armour steel (HHA). Cylindrical tensile specimens were tested at a range of strain rates from 0.001 s-1 to 2700 s-1. Quasi-static, elevated temperature tests were performed from room temperature up to 300° C. While the HHA is strain rate insensitive, the IRHA displays a significant increase in strength across the range of loading rates reducing the ultimate strength difference between the materials from 19% at 0.001s-1 to 4.6% at 2700s-1. An inverse numerical modelling approach for constitutive model calibration is presented, which accurately captured the dynamic material behaviour. The modified Johnson-Cook strength and Cockcroft-Latham (C-L) fracture models were capable of predicting the ballistic limit of each material to within 5% of the experimental result and to within 10% for deformation under blast loading. The blast rupture threshold of both materials was significantly over-estimated by the C-L model suggesting stress state or strain rate effects may be reducing the ductility of armour steel under localised blast loading.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.