Issue |
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 6 | |
Section | Experimental Techniques | |
DOI | https://doi.org/10.1051/epjconf/201818302003 | |
Published online | 07 September 2018 |
https://doi.org/10.1051/epjconf/201818302003
Hybrid composite sandwich panels under blast and impact loading
1
Department of Mechanical Engineering, Imperial College London,
London,
SW7 2AZ
2
Zienkiewicz Centre for Computational Engineering, Swansea University,
Wales,
SA1 8EN
* e-mail: j.dear@imperial.ac.uk
Published online: 7 September 2018
Naval vessels may undergo high strain rate loading, including impact, wave slamming and blast loading. Predicting the behaviour of composite sandwich structures to such loading is complicated, hence representative experiments are required. Two panels with hybrid carbon-and glass-fibre skins were fabricated and subjected to full-scale air blast loading. The panels were 1.7 × 1.5 m in size and were subjected to a 100 kg nitromethane charge at a stand-off distance of 15 m. 3D Digital Image Correlation (DIC) was implemented behind each of the panels to record the full-field out-of-plane displacement of the panels. In addition, the panels were instrumented with foil strain gauges on the front skins to record the response of the panel side in contact with the blast. The results revealed that the combination of glass-and carbon-fibre improves the blast resilience when compared to previous blast testing on panels with exclusively glass-fibre or carbon-fibre skins. However, the order in which the glass-and carbon-fibre layers were arranged did not have a significant effect on the overall panel performance. In addition, panels with the same hybrid skins were subjected to high velocity impact testing. An aluminium projectile with 25 mm diameter was fired at small scale panels (160 × 160 mm) using a laboratory gas gun at a velocity of 78 ms−1. 3D DIC was again used to record the out-of-plane displacement of these panels. In contrast to the blast experiment, the impact results showed that the order in which glass-and carbon-fibres were arranged did affect both the out-of-plane displacement and damage to the panels. The least damage occurred when glass-fibre layers were placed on the outermost layers impacted by the projectile.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.