Issue |
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 02017 | |
Number of page(s) | 6 | |
Section | Experimental Techniques | |
DOI | https://doi.org/10.1051/epjconf/201818302017 | |
Published online | 07 September 2018 |
https://doi.org/10.1051/epjconf/201818302017
The Shear Response of Beryllium as a Function of Temperature and Strain Rate
MST-8, MS-G755, Los Alamos National Laboratory,
Los Alamos
NM
87545,
U.S.A
* Corresponding author: cady@lanl.gov
Published online: 7 September 2018
A new specimen design has been developed to measure the shear response of materials. This compact forced-simple-shear specimen (CFSS) has been utilized to measure the shear stress/shear strain response of other materials [1, 2]. Earlier, unpublished work on the shear response of beryllium using a split Hopkinson pressure bar (SHPB) with the shear compression specimen (SCS) [3] had limited success at higher strain rates due to compressive deformation in the web leading to tensile failure in the samples. The CFSS geometry was engineered to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry that eliminates the multi-mode loading of other sample geometries and produces direct measurements of shear deformation. The use of digital image correlation (DIC) to capture and calculate shear stress and shear strain when paired with this test geometry will be described. There are two competing mechanisms for the deformation in beryllium were observed, a brittle to ductile response due to increased temperature and a transition of the deformation mechanism from dislocation dominated slip to twin deformation as the strain rate is increased. The advantages of this specimen geometry and test results as a function of temperature and strain rate are discussed for high purity beryllium.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.