Issue |
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 02028 | |
Number of page(s) | 6 | |
Section | Experimental Techniques | |
DOI | https://doi.org/10.1051/epjconf/201818302028 | |
Published online | 07 September 2018 |
https://doi.org/10.1051/epjconf/201818302028
Dynamic behaviour of Al-Mg aluminum alloy at a wide range of strain rates
1
Graduate student, Graduate School of Science and Engineering, National Defence Academy,
1-10-20 Hashirimizu Yokosuka Kanagawa,
Japan
2
School of Systems Engineering, National Defence Academy,
1-10-20 Hashirimizu Yokosuka Kanagawa,
Japan
* Corresponding author: kamimechnda@gmail.com
Published online: 7 September 2018
The effect of strain rate on mechanical properties of Al-2.3wt.%Mg alloy (AA5021) and commercial pure aluminum (purity 99.7wt.%: A1070) was investigated at room temperature. The tensile tests were conducted at strain rates from 1.0×10−4 to 1.0×103 s−1. The universal testing machine was used for strain rate 1.0×10-4 to 1.0×10−1 s−1. For the strain rate 1.0×100 s-1, the servohydraulic testing machine, which was developed by our laboratory, was used. The impact strain rate 1.0×103 s−1 was obtained using the split Hopkinson pressure bar method. The pure aluminum showed positive strain rate dependence of material strength at the investigated strain rates. In contrast, the Al-2.3wt.%Mg alloy showed the negative strain rate dependence at strain rates from 1.0×10−4 to 1.0×100 s−1. However, Al-2.3wt.%Mg alloy showed the positive strain rate dependence at strain rates from 1.0×100 to 1.0×103 s−1. It was surmised that the effect of dislocation locking by the solute Mg atoms became negligible at strain rate of approximately 1.0×100 s−1. It was confirmed that material properties for the Al-Mg alloy at the strain rate of 1.0×100 s−1 were important, since the strain rate dependence changed negative to positive around this strain rate.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.