Issue |
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 02060 | |
Number of page(s) | 6 | |
Section | Experimental Techniques | |
DOI | https://doi.org/10.1051/epjconf/201818302060 | |
Published online | 07 September 2018 |
https://doi.org/10.1051/epjconf/201818302060
High Rate Characterization of Three DP980 Steels
1
Department of Mechanical and Mechatronics Engineering, University of Waterloo,
Waterloo,
Ontario,
Canada
2
Honda R&D Americas,
Raymond,
Ohio,
USA
3
Steel Market Development Institute, Auto/Steel Partnership (A/SP),
Southfield,
Michigan,
USA
* Corresponding author: jmsimber@uwaterloo.ca
Published online: 7 September 2018
Advanced high strength steels (AHSS) are used extensively in the automotive industry in the ongoing effort to reduce vehicle weight. Their increased strength allows for the reduction of sheet thickness, and thus a reduction in mass, while offering formability and cost advantages when compared to other metal alloys typically considered for lightweight applications. DP980 steels are AHSS being considered for structural energy absorbing components; however, there is a lack of published information on their high rate behaviour. This paper presents the results of an experimental program that characterized three production DP980 steels from three different manufacturers at strain rates of 0.001, 1, 10, 100 and 1,000 s-1. An electro-mechanical frame was used for the quasi-static tests, the 1, 10, and 100 s-1 tests were carried out using a fast hydraulic apparatus and the 1,000 s-1 experiments were carried out using a tensile split Hopkinson bar. The quasi-static hardening response at strains higher than the uniform elongation of about 7% was obtained by using a shear test, thus avoiding the use of inverse modelling techniques. The results indicate that the DP980 steels are moderately rate sensitive, with one of the materials showing higher sensitivity than the others. One of the materials exhibited a yield point phenomenon that appears to affect the behaviour of the material at 100 and 1,000 s-1, however, the reasons for this behaviour remain an open question. The data was fit to modified Johnson-Cook and Cowper-Symonds model to account for rate sensitivity. The results presented in this paper provide a tool for modelling the dynamic behaviour of DP980 steels.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.