Issue |
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 04007 | |
Number of page(s) | 6 | |
Section | Industrial Applications | |
DOI | https://doi.org/10.1051/epjconf/201818304007 | |
Published online | 07 September 2018 |
https://doi.org/10.1051/epjconf/201818304007
Additively manufactured penetrating warheads
1
IMPETUS Afea,
Grenade,
France
2
MBDA,
Le Plessis-Robinson,
France
3
Thiot Ingénierie,
Route Nationale,
46130
Puybrun,
France
* Corresponding author: jerome@impetus.fr
Published online: 7 September 2018
Penetrating warheads have to both defeat thick and high strength targets and have high blast effects. Lattice structures could help to enhance blast effect and reduce the weight of the penetrators. Additive manufacture provides a method to produce this concept. This paper details a programme to evaluate the perforation performance of such a penetrator. This study implemented an approach based on the integration of virtual and physical tests. A mesoscale numerical approach based on explicit high order finite element (HOFEM) was first developed to optimize the lattice pattern. The dynamic behaviour of this material was then determined using the Split Hopkinson Pressure Bar (SHPB) technique and this was then used to fit a constitutive model in Impetus Afea Solver®. The modelling of the concrete penetration of small scale warhead was based on the advanced meshless approach coupled with HOFEM. The models developed enabled the determination, simultaneously, of the homogenised behaviour of the lattice material and also the global behaviour of the penetrators during and after the penetration. Seven ballistic tests against concrete targets were performed at Thiot Ingenierie to investigate the penetration capabilities of the additively manufactured penetrating warhead concept and especially when using a lattice pattern.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.