Issue |
EPJ Web Conf.
Volume 201, 2019
The XXII International Scientific Conference of Young Scientists and Specialists (AYSS-2018)
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 5 | |
Section | Condensed Matter Physics | |
DOI | https://doi.org/10.1051/epjconf/201920102002 | |
Published online | 04 February 2019 |
https://doi.org/10.1051/epjconf/201920102002
Synthesis, characterization and promising properties of Fe3O4/CdSe nanocomposite
1
Physics Department, Faculty of Science, Tanta University, Tanta, Egypt
2
Chemistry Department, National Institute of Laser Enhanced Sciences, Cairo University, Cairo, Egypt
* Corresponding author: sh_m_10099@yahoo.com
Published online: 4 February 2019
Nowadays there is a continuously increasing worldwide concern for the utilization of magnetic semiconductor nanocomposites. We synthesized bifunctional magnetic–luminescent nanocomposites with Fe3O4 nanoparticles as the cores and CdSe as the shells by a facile direct precipitation method. Transmission electron microscopy (TEM) images revealed that the obtained bifunctional nanocomposites had a core–shell structure, in a spherical shape with a particle radius of about 10.3nm, and the shell thickness of about 2.2nm. The flower shape is due to the inhomogeneous growth of CdSe due to the presence of many active sites which turn to be nucleation centers for the CdSe on the surface of the nano-magnetite. The X-ray diffraction (XRD) patterns showed a cubic spinel structure of the Fe3O4 core. Magnetic measurements indicated that the presence of CdSe in the composite reduces its magnetic properties. Optical measurements of the Fe3O4/CdSe nanocomposite show that the prepared samples have dual functions, optical tunable band gap of the semiconductor quantum dots and the magnetic properties of magnetite. This type of composites would be considered as dilute magnetic semiconductors (DMS).
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.