Issue |
EPJ Web Conf.
Volume 209, 2019
RICAP18, 7th Roma International Conference on Astroparticle Physics
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/epjconf/201920901009 | |
Published online | 13 May 2019 |
https://doi.org/10.1051/epjconf/201920901009
Core-Collapse Supernova neutrino detection prospects with the KM3NeT neutrino telescopes.
1 APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité, France
2 IFIC—Instituto de Física Corpuscular (CSIC—Universitat de València), Paterna, Valencia, Spain
3 Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
a e-mail: mcolomer@apc.in2p3.fr
b e-mail: lincetto@cppm.in2p3.fr
Published online: 13 May 2019
Core Collapse Supernovae (CCSN) are explosive phenomena that may occur at the end of the life of massive stars, releasing over 99% of the energy through neutrino emission with energies on the 10 MeV scale. While the explosion mechanism is not fully understood, neutrinos are believed to play an important role. The only detection as of today are the 24 neutrinos from supernova SN1987A. The observation of the next Galactic CCSN will lead to important breakthroughs across the fields of astrophysics, nuclear and particle physics.
For a Galactic CCSN, the KM3NeT ORCA and ARCA detectors in the Mediterranean Sea will observe a significant number of neutrinos via the detection of Cherenkov light, mostly induced by Inverse Beta Decay (IBD) interactions in sea water. The detection of coincident photons by the 31 photomultipliers of the KM3NeT digital optical modules (DOMs) allows to separate the signal from the optical background sources.
The KM3NeT detection sensitivity to a Galactic CCSN and the potential to resolve the neutrino light-curve have been estimated exploiting detailed Monte-Carlo simulations. Specific criteria are proposed for the online triggering and the participation in the SNEWS network.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.