Issue |
EPJ Web Conf.
Volume 209, 2019
RICAP18, 7th Roma International Conference on Astroparticle Physics
|
|
---|---|---|
Article Number | 01040 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/epjconf/201920901040 | |
Published online | 13 May 2019 |
https://doi.org/10.1051/epjconf/201920901040
The future of the high energy cosmic ray detection: HERD
DPNC, Université de Genève, 24 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
a e-mail: chiara.perrina@unige.ch
Published online: 13 May 2019
The High Energy cosmic-Radiation Detection (HERD) facility will be one of the space astronomy payloads on board the future Chinese space station. The ambitious aim of HERD is the direct detection of cosmic rays towards the “knee” region (~ 1 PeV), with a detector able to measure electrons, photons and nuclei with an excellent energy resolution (1% for electrons and photons at 200 GeV and 20% for nuclei at 100 GeV - PeV), an acceptance 10 times the one of present generation missions (~ 1 m2 sr), and long life-time (> 10 years). The primary objectives of HERD are the indirect search for dark matter particles and the precise measurement of energy distribution and composition of cosmic rays from 30 GeV up to a few PeV, determining the origin of the “knee” structure of the spectrum. Furthermore, HERD will monitor the high energy gamma-ray sky from 500 MeV, observing gamma-ray bursts, active galactic nuclei, galactic microquasars, etc. HERD will be composed of a homogeneous calorimeter, surrounded by a particle tracker and a plastic scintillator detector. Two possible trackers are under study: a 5-side tracker made of silicon strip detectors and a 4-side scintillating fiber tracker with a silicon strip top tracker. The total volume of HERD will be (2.3 × 2.3 × 2.6) m3 with a weight of about 4 t. The HERD design, perspectives, expected performances in terms of energy sensitivity and acceptance will be presented in this contribution.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.