Issue |
EPJ Web Conf.
Volume 213, 2019
EFM18 – Experimental Fluid Mechanics 2018
|
|
---|---|---|
Article Number | 02033 | |
Number of page(s) | 6 | |
Section | Contributions | |
DOI | https://doi.org/10.1051/epjconf/201921302033 | |
Published online | 28 June 2019 |
https://doi.org/10.1051/epjconf/201921302033
Test Facility for High-Speed Probe Calibration
VZLU – Czech Aerospace Research Centre, Beranových 130, 199 05 Prague, Czech Republic
* Corresponding author: jelinek@vzlu.cz
Published online: 28 June 2019
A new test facility was built up as a part of a closed-loop transonic wind tunnel in VZLU´s High-speed Aerodynamics Department. The wind tunnel is driven by a twelve stage radial compressor and Mach and Reynolds numbers can be changed by the compressor speed and by the total pressure in the wind tunnel loop by a set of vacuum pumps, respectively. The facility consists of an axisymmetric subsonic nozzle with an exit diameter de = 100 mm. The subsonic nozzle is designed for regimes up to M = 1 at the nozzle outlet. At the nozzle inlet there is a set of a honeycomb and screens to ensure the flow stream laminar at the outlet of the nozzle. The subsonic nozzle can be supplemented with a transonic slotted nozzle or a supersonic rigid nozzle for transonic and supersonic outlet Mach numbers. The probe is fixed in a probe manipulator situated downstream of the nozzle and it ensures a set of two perpendicular angles in a wide range (±90°). The outlet flow field was measured through in several axial distances downstream the subsonic nozzle outlet. The total pressure and static pressure was measured in the centreline and the total pressure distribution in the vertical and horizontal plane was measured as well. Total pressure fluctuations in the nozzle centreline were detected by a FRAP probe. From the initial flow measurement in a wide range of Mach numbers the best location for probe calibration was chosen. The flow field was found to be suitable for probe calibration.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.