Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 8 | |
Section | T2 - Offline computing | |
DOI | https://doi.org/10.1051/epjconf/201921402006 | |
Published online | 17 September 2019 |
https://doi.org/10.1051/epjconf/201921402006
AREUS: A Software Framework for ATLAS Readout Electronics Upgrade Simulation
Institute of Nuclear and Particle Physics,
TU Dresden
* e-mail: nico.madysa@tu-dresden.de
Published online: 17 September 2019
The design of readout electronics for the LAr calorimeters of the ATLAS detector to be operated at the future High-Luminosity LHC (HL-LHC) requires a detailed simulation of the full readout chain in order to find optimal solutions for the analog and digital processing of the detector signals. Due to the long duration of the LAr calorimeter pulses relative to the LHC bunch crossing time, out-of-time signal pileup needs to be taken into account. For this purpose, the simulation framework AREUS has been developed. It models analog-to-digital conversion, gain selection, and digital signal processing at bit precision, including digitization noise and detailed electronics effects. Trigger and object reconstruction algorithms are taken into account in the optimization process. The software implementation of AREUS, the concepts of its main functional blocks, as well as optimization considerations will be presented. Various approaches to introduce parallelism into AREUS will be compared against each other.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.