Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 03025 | |
Number of page(s) | 7 | |
Section | T3 - Distributed computing | |
DOI | https://doi.org/10.1051/epjconf/201921403025 | |
Published online | 17 September 2019 |
https://doi.org/10.1051/epjconf/201921403025
ATLAS Global Shares implementation in PanDA
1
University of Texas at Arlington,
Texas,
USA
2
European Organization for Nuclear Research,
Geneva,
Switzerland
3
Brookhaven National Laboratory,
New York,
USA
4
Ludwig Maximilian University,
Munich,
Germany
* Corresponding author: barreiro [at] uta.edu
Published online: 17 September 2019
PanDA (Production and Distributed Analysis) is the workload management system for ATLAS across the Worldwide LHC Computing Grid. While analysis tasks are submitted to PanDA by over a thousand users following personal schedules (e.g. PhD or conference deadlines), production campaigns are scheduled by a central Physics Coordination group based on the organization’s calendar. The Physics Coordination group needs to allocate the amount of Grid resources dedicated to each activity, in order to manage sharing of CPU resources among various parallel campaigns and to make sure that results can be achieved in time for important deadlines. While dynamic and static shares on batch systems have been around for a long time, we are trying to move away from local resource partitioning and manage shares at a global level in the PanDA system. The global solution is not straightforward, given different requirements of the activities (number of cores, memory, I/O and CPU intensity), the heterogeneity of Grid resources (site/HW capabilities, batch configuration and queue setup) and constraints on data locality. We have therefore started the Global Shares project that follows a requirements-driven multi-step execution plan, starting from definition of nestable shares, implementing share-aware job dispatch, aligning internal processes with global shares and finally implementing a pilot stream control for controlling the batch slots that keeps late binding. This contribution will explain the development work and architectural changes in PanDA to implement Global Shares, and describe how the Global Shares project has enabled the central control of resources and significantly reduced manual operations.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.