Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 05005 | |
Number of page(s) | 8 | |
Section | T5 - Software development | |
DOI | https://doi.org/10.1051/epjconf/201921405005 | |
Published online | 17 September 2019 |
https://doi.org/10.1051/epjconf/201921405005
Software packaging and distribution for LHCb using Nix
1
The University of Manchester
2
CERN
* e-mail: christopher.burr@cern.ch
Published online: 17 September 2019
Software is an essential and rapidly evolving component of modern high energy physics research. The ability to be agile and take advantage of new and updated packages from the wider data science community is allowing physicists to efficiently utilise the data available to them. However, these packages often introduce complex dependency chains and evolve rapidly introducing specific, and sometimes conflicting, version requirements which can make managing environments challenging. Additionally, there is a need to replicate old environments when generating simulated data and to utilise pre-existing datasets. Nix is a “purely functional package manager” which allows for software to be built and distributed with fully specified dependencies, making packages independent from those available on the host. Builds are reproducible and multiple versions/configurations of each package can coexist with the build configuration of each perfectly preserved. Here we will give an overview of Nix followed by the work that has been done to use Nix in LHCb and the advantages and challenges that this brings.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.