Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 05038 | |
Number of page(s) | 7 | |
Section | T5 - Software development | |
DOI | https://doi.org/10.1051/epjconf/201921405038 | |
Published online | 17 September 2019 |
https://doi.org/10.1051/epjconf/201921405038
A plugin-based approach to data analysis for the AMS experiment on the ISS
INFN - Sezione di Perugia, Via A. Pascoli s.n.c.,
06123,
Perugia (PG)
* e-mail: valerio.formato@cern.ch
Published online: 17 September 2019
In many HEP experiments a typical data analysis workflow requires each user to read the experiment data in order to extract meaningful information and produce relevant plots for the considered analysis. Multiple users accessing the same data result in a redundant access to the data itself, which could be factorized effectively improving the CPU efficiency of the analysis jobs and relieving stress from the storage infrastructure. To address this issue we present a modular and lightweight solution where the users code is embedded in different "analysis plugins" which are then collected and loaded at runtime for execution, where the data is read only once and shared between all the different plugins. This solution was developed for one of the data analysis groups within the AMS collaboration but is easily extendable to all kinds of analyses and workloads that need I/O access on AMS data or custom data formats and can even adapted with little effort to another HEP experiment data. This framework could then be easily embedded into a "analysis train" and we will discuss a possible implementation and different ways to optimise CPU efficiency and execution time.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.