Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 07021 | |
Number of page(s) | 8 | |
Section | T7 - Clouds, virtualisation & containers | |
DOI | https://doi.org/10.1051/epjconf/201921407021 | |
Published online | 17 September 2019 |
https://doi.org/10.1051/epjconf/201921407021
Sim@P1: Using Cloudscheduler for offline processing on the ATLAS HLT farm
1
University of Victoria,
Canada
2
University of Cape Town,
South Africa
3
Universita e INFN,
Bologna,
Italy
4
University of California,
Irvine,
USA
5
Lancaster University,
UK
* e-mail: berghaus@cern.ch
Published online: 17 September 2019
The Simulation at Point1 (Sim@P1) project was established in 2013 to take advantage of the Trigger and Data Acquisition High Level Trigger (HLT) farm of the ATLAS experiment at the LHC. The HLT farm is a significant compute resource, which is critical to ATLAS during data taking. This large compute resource is used to generate and process simulation data for the experiment when ATLAS is not recording data. The Sim@P1 system uses virtual machines, deployed by OpenStack, in order to isolate the resources from the ATLAS technical and control network. During the upcoming long shutdown in 2019 (LS2), the HLT farm including the Sim@P1 infrastructure will be upgraded. A previous paper on the project emphasized the need for “simple, reliable, and efficient tools” to quickly switch between data acquisition operation and offline processing. In this contribution we assess various options for updating and simplifying the provisional tools. Cloudscheduler is a tool for provisioning cloud resources for batch computing that has been managing cloud resources in HEP offline computing since 2012. We present the argument for choosing Cloudscheduler, and describe technical details regarding optimal utilization of the Sim@P1 re-sources.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.