Issue |
EPJ Web Conf.
Volume 221, 2019
XXVI Conference on Numerical Methods for Solving Problems in the Theory of Elasticity and Plasticity (EPPS-2019)
|
|
---|---|---|
Article Number | 01045 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/epjconf/201922101045 | |
Published online | 30 October 2019 |
https://doi.org/10.1051/epjconf/201922101045
Modeling of a hysteretic deformation response in polycrystalline ferroelastics
Institute mathematics, mechanics and computer sciences named after Vorovich I.I. of Southern Federal University, Rostov on Don, Russia
* Corresponding author: a.s.skaliukh@gmail.com
Published online: 30 October 2019
You In the absence of an electric field a mathematical model describing the ferroelastic response of complete ferroelectrics ferroelastics on action of mechanical stresses is proposed. The modeling is based on the concept of a “ferroelastic” element, similar to the theory of plasticity where used the Saint-Venant element of “dry friction”. The constitutive relations for elastic and residual strains are constructed. The dependence of elastic compliance on the main values of the tensor of residual strains is established. For residual strains, the constitutive relations are obtained in differentials. The obtained constitutive equations can be used in finite element analysis of irreversible processes of deformation of polycrystalline ferroelastics. A number of numerical experiments were performed, which showed good agreement with the experimental data.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.