Issue |
EPJ Web Conf.
Volume 223, 2019
IV International Conference on Nuclear Structure and Dynamics (NSD2019)
|
|
---|---|---|
Article Number | 01071 | |
Number of page(s) | 4 | |
Section | Contributions | |
DOI | https://doi.org/10.1051/epjconf/201922301071 | |
Published online | 04 December 2019 |
https://doi.org/10.1051/epjconf/201922301071
Reactions with Exotic Nuclei at Near and Sub-barrier Energies
1
China Institute of Atomic Energy,
P.O. Box 275(10),
Beijing,
102413,
China
2
Department of Physics, Guangxi Normal University,
Guiline,
541004,
China
* Corresponding author: e-mail: cjlin@ciae.ac.cn
**
Present address: Center for Nuclear Study, University of Tokyo
***
Present address: Michigan State University
****
Present address: Joint Institute for Nuclear Research, Dubna
Published online: 4 December 2019
We will introduce some new results derived recently by the nuclear reaction group at China Institute of Atomic Energy, on the properties of the optical model potentials of neutron-halo 6He system and reaction mechanisms induced by proton-drip line nucleus 17F at energies around the Coulomb barrier. For the study of optical model potentials of exotic nuclear system, we proposed a novel method, i.e., the transfer reaction method. This method has been applied to extract the optical potentials of neutron-halo 6He+209Bi system by measuring the one-proton transfer reactions induced by 7Li on a 208Pb target. A complete picture of threshold anomaly behavior was obtained in the 6He+209Bi system for the first time, where a decreasing trend of the depth of the imaginary potential is observed in the deep sub-barrier region, and the reaction threshold energy is extracted. Moreover, results show thatthe dispersion relation is not applicable for this exotic nuclear system. Reaction mechanisms of proton-rich nuclear systems 17F+89Y and 58Ni were also studied at energies around the Coulomb barrier. Continuum discretized coupled-channels calculations indicate that the coupling effects of the continuum states of 17F+89Y is not significant. Thanks to the employment of a powerful ionization-chamber based detector array, the reaction products over a large Z in the systems of 17F+58Ni can be identified clearly. The data analysis is undergoing.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.