Issue |
EPJ Web Conf.
Volume 224, 2019
IV International Conference “Modeling of Nonlinear Processes and Systems” (MNPS-2019)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 5 | |
Section | Mathematical Modeling of Physical Phenomena, Processes and Systems | |
DOI | https://doi.org/10.1051/epjconf/201922402001 | |
Published online | 09 December 2019 |
https://doi.org/10.1051/epjconf/201922402001
Rarefied Poiseuille Flow in a Circular Tube
Northern (Arctic) Federal University named after M.V. Lomonosov, RU-163002, Arkhangelsk, Russia
* e-mail: v.popov@narfu.ru
Published online: 9 December 2019
An isothermal rarefied gas flow through a long circular tube due to longitudinal pressure gradient (a three-dimensional Poiseuille problem) was studied using the linearized Bhatnagar-Gross-Krook model kinetic equation over the whole range of the Knudsen numbers covering both free molecular and hydrodynamic regimes. The solution of the model kinetic equation with the diffuse boundary condition is obtained by the collocation method. This approach is based on the Chebyshev polynomials and rational Chebyshev functions. Choosing the zeros of Chebyshev polynomials in the multivariate range of integration for the collocation points, we reduce this problem to a set of algebraic equations. Based on the proposed approach, we have calculated the mass and the heat fluxes through the tube. The obtained results have also been compared with other studies. The developed approach may also be applied to a more general class of problems of rarefied gas flows in microand nanotubes.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.