Issue |
EPJ Web Conf.
Volume 226, 2020
Mathematical Modeling and Computational Physics 2019 (MMCP 2019)
|
|
---|---|---|
Article Number | 02019 | |
Number of page(s) | 4 | |
Section | Mathematical Modeling, Numerical Methods, and Simulation | |
DOI | https://doi.org/10.1051/epjconf/202022602019 | |
Published online | 20 January 2020 |
https://doi.org/10.1051/epjconf/202022602019
Global Thermodynamic Properties of Complex Spin Systems Calculated from Density of States and Indirectly by Thermodynamic Integration Method
Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice,
Park Angelinum 9,
040 01
Košice,
Slovakia
★ e-mail: marek.semjan@student.upjs.sk
★★ e-mail: milan.zukovic@upjs.sk
Published online: 20 January 2020
Evaluation of global thermodynamic properties such as the entropy or the free energy of complex systems featuring a high degree of frustration or disorder is often desirable. Nevertheless, they cannot be measured directly in standard Monte Carlo simulation. Therefore, they are either evaluated indirectly from the directly measured quantities, for example by the thermodynamic integration method (TIM), or by applying more sophisticated simulation methods, such as the Wang-Landau (WL) algorithm, which can directly sample density of states. In the present investigation we compare the performance of the WL and TIM methods for the calculation of the entropy of an Ising antiferromagnetic system on a Kagome lattice – a typical example of a complex spin system with high geometrical frustration resulting in a non-zero residual entropy the value of which is exactly known. It is found that the easier to implement TIM can yield results of comparable accuracy with that of the more involved WL method.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.