Issue |
EPJ Web Conf.
Volume 231, 2020
8th International Meeting of Union for Compact Accelerator-Driven Neutron Sources (UCANS-8)
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 4 | |
Section | Instrumentation | |
DOI | https://doi.org/10.1051/epjconf/202023105001 | |
Published online | 11 March 2020 |
https://doi.org/10.1051/epjconf/202023105001
Development of new small-angle neutron scattering geometry with ring-shaped collimated beam for compact neutron source
Department of Nuclear Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto 615-8540, Japan
* Corresponding author: funama.fumiaki.26e@kyoto-u.jp
Published online: 11 March 2020
Small-angle neutron scattering (SANS) is an important tool to investigate material properties in nanometer to micrometer scale. The opportunity to conduct SANS experiments is, however, limited because of the low number of available SANS beam lines. Compact neutron sources are expected to play a significant role to increase neutron scattering facilities including SANS beam lines. The problem is that the flux of compact neutron sources can be very low, which makes it difficult to measure scattered neutrons from a sample. A SANS geometry with ring-shaped collimated beam (r-SANS) is developed to conduct SANS experiments at very low flux neutron sources. By using ring-shaped collimated neutrons to hit a large sample, the scattered neutron flux becomes high on the ring center line because the scattered neutrons with each scattered angle overlaps on each point of the ring center line. By setting a 3He point detector on the center line and shielding the surrounding of the small detection area well, high signal to noise ratio experiments are possible. In this paper, we show the concept of this new geometry and a preliminary experimental result of a glassy carbon sample taken with the r-SANS geometry constructed at Kyoto University proton Accelerator Neutron Source (KUANS).
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.