Issue |
EPJ Web Conf.
Volume 237, 2020
The 29th International Laser Radar Conference (ILRC 29)
|
|
---|---|---|
Article Number | 03013 | |
Number of page(s) | 4 | |
Section | Boundary Layer, Pollution, Greenhouse and Trace Gases | |
DOI | https://doi.org/10.1051/epjconf/202023703013 | |
Published online | 07 July 2020 |
https://doi.org/10.1051/epjconf/202023703013
Flight Demonstration of a 2-Micron, Double Plused CO2 IPDA Lidar Instrument
1 NASA Langley Research Center, MS 468, Hampton, VA 23681 USA
2 Science System &Applications, Inc, One Enterprise Parkway, Hampton, Virginia 23666 USA
3 Michigan Aerospace Corporation, 1777 Highland Dr. # B, Ann Arbor, MI 48108 USA
Published online: 7 July 2020
NASA Langley Research Center (LaRC) developed a double pulsed, high energy 2-micron Integrated Path Differential Absorption (IPDA) lidar instrument to measure atmospheric CO2 column density. The 2-μm double pulsed IPDA lidar was flown ten times in March and April of 2014. It was determined that the IPDA lidar measurement is in good agreement with an in-situ CO2 measurement by a collocated NOAA flight. The average column CO2 density difference between the IPDA lidar measurements and the NOAA air samples is 1.48ppm in the flight altitudes of 3 to 6.1 km.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.