Issue |
EPJ Web Conf.
Volume 237, 2020
The 29th International Laser Radar Conference (ILRC 29)
|
|
---|---|---|
Article Number | 03019 | |
Number of page(s) | 4 | |
Section | Boundary Layer, Pollution, Greenhouse and Trace Gases | |
DOI | https://doi.org/10.1051/epjconf/202023703019 | |
Published online | 07 July 2020 |
https://doi.org/10.1051/epjconf/202023703019
Observation of Wildfire Smoke Transport and PBL Variation During Summer 2018 Listos Campaign in New York City
1 the City College of New York, NY, NY 10031, USA.
2 NOAA – Cooperative Science Center for Earth System Sciences and Remote Sensing Technologies
3 School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
4 NOAA-NCEP Environmental Modeling Center and IM System Group Inc., College Park, MD 20740, USA
* Email: yhwu@ccny.cuny.edu
Published online: 7 July 2020
Air pollution associated with wildfire smoke transport and heat wave in summer pose serious public health concerns in the populated New York City (NYC) area. In this study, we present a synergistic lidar, ceilometer and in-situ observation for wildfire smoke transport and planetary-boundary-layer (PBL) variation in the NYC urban and coastal area during the summer 2018 Long Island Sound Tropospheric Ozone (O3) Study (LISTOS). A dense smoke plume and mixing into PBL on August 15-17, 2018 was analyzed while the coincident enhancement of PM2.5, CO and O3 exceedance of NAAQS was demonstrated from both the observation and model. In addition, we show the temporal-spatial variation and difference of the PBL-height (PBLH) in the NYC urban and its coastal vicinity. We further evaluate the NAM-CMAQ model forecast of O3, PM2.5 and PBLH with the ground observations.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.