Issue |
EPJ Web Conf.
Volume 237, 2020
The 29th International Laser Radar Conference (ILRC 29)
|
|
---|---|---|
Article Number | 06011 | |
Number of page(s) | 4 | |
Section | Wind, Water Vapor and Temperature Measurements | |
DOI | https://doi.org/10.1051/epjconf/202023706011 | |
Published online | 07 July 2020 |
https://doi.org/10.1051/epjconf/202023706011
Operation of the Airborne 355-nm High Spectral Resolution and Doppler Lidar LNG
1 –LATMOS, Sorbonne Université-CNRS-UVSQ Paris
2 DT-INSU, CNRS, Meudon, France
Published online: 7 July 2020
High spectral resolution lidar (HSRL) are known to offer capabilities of separating attenuated aerosol and molecular backscattering so that particle extinction and backscattering can be separately retrieved. UV operation provides high energy in eye-safety conditions. Further to that, it could be important for most meteorological or environmental studies to get wind measurements at the same time. LNG is now the only HSR Doppler Lidar (HSRDL) system capable of this. Results obtained during ground-based and airborne measurements show that the backscatter and extinction coefficients at 355 nm can be measured with a relative precision better than 10% (adjusting altitude and time resolution from 60 m to 240 m and 30s to 2mn, respectively) in aerosol layers of 0.5 10−6 m−1 sr−1 backscatter coefficient from ground and aircraft. The same relative precision is obtained in cirrus clouds of a 10−5 m−1 sr−1 backscatter coefficient. The capacity of the system to perform wind velocity measurements has also been demonstrated with precisions in the range of 1 to 2 ms−1 in same conditions. We present the main characteristics and illustrate observational capabilities from ground-based and airborne measurements.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.