Issue |
EPJ Web Conf.
Volume 238, 2020
EOS Annual Meeting (EOSAM 2020)
|
|
---|---|---|
Article Number | 12014 | |
Number of page(s) | 2 | |
Section | Topical Meeting (TOM) 13- Advances and Applications of Optics and Photonics | |
DOI | https://doi.org/10.1051/epjconf/202023812014 | |
Published online | 20 August 2020 |
https://doi.org/10.1051/epjconf/202023812014
Three-dimensional laser writing inside silicon using THz-repetition-rate trains of ultrashort pulses
Aix-Marseille Univ., CNRS, LP3 UMR 7341, 13009 Marseille, France
* Corresponding author: andong.wang@univ-amu.fr; david.grojo@univ-amu.fr
Published online: 20 August 2020
Three-dimensional laser writing inside silicon remains today inaccessible with the shortest infrared light pulses unless complex schemes are used to circumvent screening propagation nonlinearities. Here, we explore a new approach irradiating silicon with trains of femtosecond laser pulses at repetition rates up to 5.6 THz. This extremely high repetition rate is faster than laser energy dissipation from microvolume inside silicon, thus enabling unique capabilities for pulse-to-pulse accumulation of free carriers generated by nonlinear ionization, as well as progressive thermal bandgap closure before any diffusion process comes into play. By space-resolved measurements of energy delivery inside silicon, we evidence a net increase on the level of space-time energy localization. The improvement is also supported by experiments demonstrating an apparent decrease of the energy threshold for modification and drastic improvements on the repeatability, uniformity, and symmetricity of the produced features. The unique benefits of THz bursts can provide a new route to meet the challenge of 3D inscription inside narrow bandgap materials.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.