Issue |
EPJ Web Conf.
Volume 239, 2020
ND 2019: International Conference on Nuclear Data for Science and Technology
|
|
---|---|---|
Article Number | 17009 | |
Number of page(s) | 4 | |
Section | Experimental Facilities, Equipment, Techniques and Methods | |
DOI | https://doi.org/10.1051/epjconf/202023917009 | |
Published online | 30 September 2020 |
https://doi.org/10.1051/epjconf/202023917009
Designing Stainless Steel Reflector at VR-1 Training Reactor
Department of Nuclear Reactors, Czech Technical University in Prague, V Holesovickach 2, 180 00, Prague, Czech Republic
* e-mail: jan.frybort@fjfi.cvut.cz
Published online: 30 September 2020
Light-water reactor cores are commonly surrounded by a stainless steel and water reflector. The reflectors are improving power distribution in the core, reducing the leakage of neutrons and thus also protecting the pressurized vessel from the neutron irradiation and the following embrittlement. Contrary to the standard procedures utilized for generation of the fuel assembly data, the reflector elements require a special approach. The major difficulty with the reflectors is represented by an absence of neutron sources in the reflector elements. Some artificial neutron source simulating the realistic source of neutrons from neutron leakage from the surrounding fuel assemblies must be added in the calculation model. The reflector data in the full-core calculations have a great impact on the power distribution in the core. The research in this field is usually focused on the square geometry, and therefore the accurate data for the hexagonal geometry are lacking. Improvements in this area are needed.
Training Reactor VR-1 is used for measurements related to nuclear engineering. Department of Nuclear Reactors operating this reactor at the Czech Technical University in Prague is currently designing reflector elements containing stainless steel in order to provide measurable characteristics that can be compared to calculations realized by either Monte-Carlo codes or macroscopic core simulators. This article summarizes the methodology of development of the reflector assemblies to improve their similarity with the VVER-1000 reflector. The impact of the evaluated nuclear data is assessed. Further improvements of the proposed design is necessary to reach better agreement with the neutron spectrum in VVER-1000 reactor reflectors. The influence of evaluated data on the global characteristics was found negligible.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.