Issue |
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
|
|
---|---|---|
Article Number | 04029 | |
Number of page(s) | 8 | |
Section | 4 - Data Organisation, Management and Access | |
DOI | https://doi.org/10.1051/epjconf/202024504029 | |
Published online | 16 November 2020 |
https://doi.org/10.1051/epjconf/202024504029
Evaluation of the ATLAS model for remote access to database resident information for LHC Run 3
1
University of Oxford, Denys Wilkinson Bldg, Keble Rd, Oxford OX1 3RH, UK
2
CERN, 1211 Geneva 23, Switzerland
* e-mail: Elizabeth.Gallas@physics.ox.ac.uk
** e-mail: Gancho.Dimitrov@cern.ch
*** Copyright 2020 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.
Published online: 16 November 2020
The ATLAS model for remote access to database resident information relies upon a limited set of dedicated and distributed Oracle database repositories complemented with the deployment of Frontier system infrastructure on the WLCG (Worldwide LHC Computing Grid). ATLAS clients with network access can get the database information they need dynamically by submitting requests to a Squid proxy cache server in the Frontier network which provides results from its cache or passes new requests along the network to launchpads co-located at one of the Oracle sites (the master Oracle database at CERN or one of the Tier 1 Oracle database replicas). Since the beginning of LHC Run 1, the system has evolved in terms of client, Squid, and launchpad optimizations but the distribution model has remained fundamentally unchanged. On the whole, the system has been broadly successful in providing data to clients with relatively few disruptions even while site databases were down due to overall redundancy. At the same time, its quantitative performance characteristics, such as the global throughput of the system, the load distribution between sites, and the constituent interactions that make up the whole, were largely unknown. But more recently, information has been collected from launchpad and Squid logs into an Elasticsearch repository which has enabled a wide variety of studies of various aspects of the system. This contribution*** will describe dedicated studies of the data collected in Elasticsearch over the previous year to evaluate the efficacy of the distribution model. Specifically, we will quantify any advantages that the redundancy of the system offers as well as related aspects such as the geographical dependence of wait times seen by clients in getting a response to its requests. These studies are essential so that during LS2 (the long shutdown between LHC Run 2 and Run 3), we can adapt the system in preparation for the expected increase in the system load in the ramp up to Run 3 operations.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.